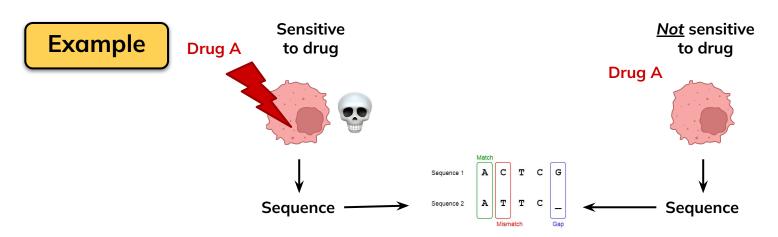
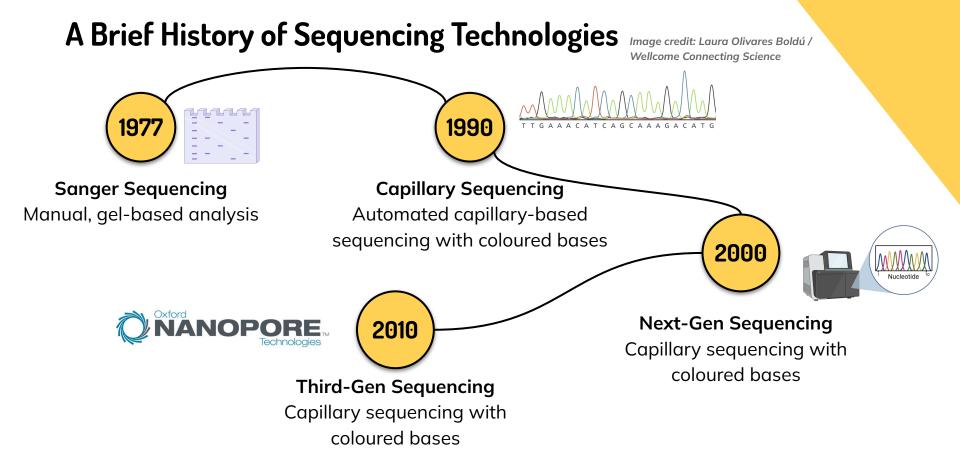

IMPORTANT INFO

After each concept is covered, a youtube link can be found in the slides that explains the concept more clearly (also in Additional Resources document)

We also <u>STRONGLY RECOMMEND</u> reading up / googling each concept on your own beyond the resources we provided, if you want to know their intricacies.

DNA Analysis Techniques: Lesson Overview




DNA Sequencing

Objective: Confirm that there are **no deleterious mutations** in our cloned insert (following the <u>molecular cloning pipeline</u>).

OR

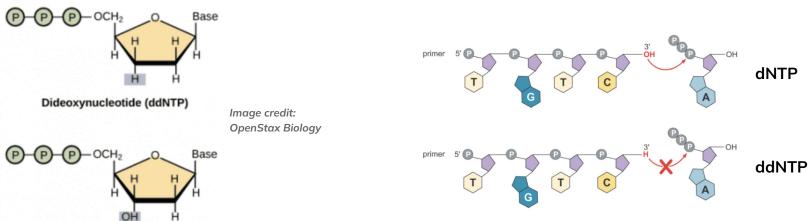
Obtain sequence from subject of interest to analyse features.

Comparing Sequencing Methods

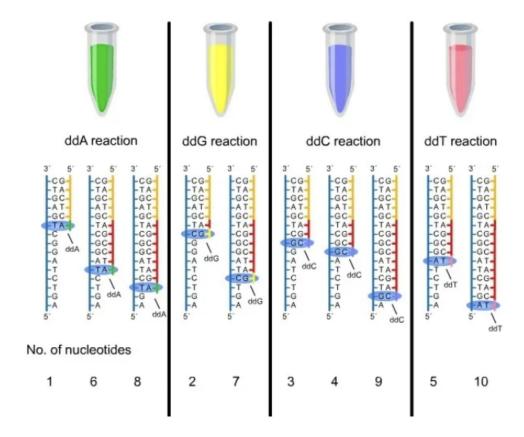
	1970s	1990s	2000s	2010s	2020s
Generation	1st generation with gel-based methods	1st generation with capillary methods	Next generation	Third generation	Future generations
Technologies	Sanger sequencing (manual)	Sanger sequencing (automated)	Illumina, Roche 454, Ion Torrent	PacBio SMRT, ONT	Genapsys, MGI
Breakthrough	Gel-based analysis	Capillary analysis	High throughput	Long reads	
Pros	Accuracy	Higher scale, Lower cost, Accuracy	Long reads, Ultra-fast, Portability		Aiming for cost effectiveness, accuracy
Cons	Labour intensive, High cost	Short reads make analysis more difficult		A reduction in accuracy	

Question Walkthrough

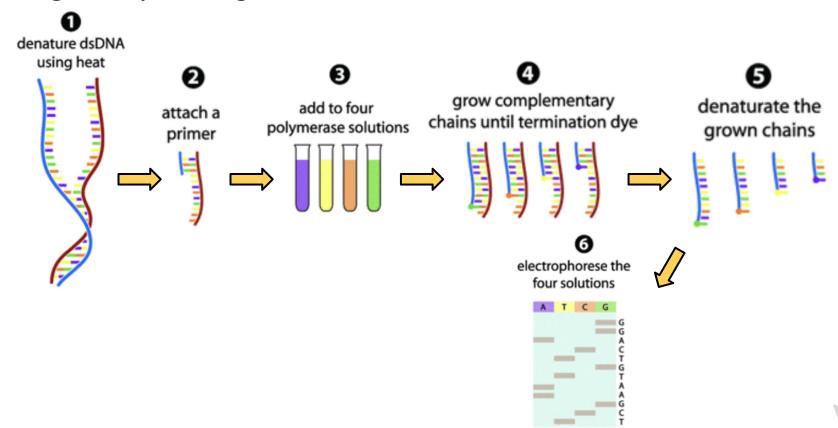
Frederick Sanger (1918-2013) invented protein, RNA and DNA sequencing, and Sir Shankar Balasubramanian (1966-present) invented high-throughput DNA sequencing. The National Health Service is sequencing an unprecedented 100 000 genomes from rare-disease patients, but different sequencing technologies have different merits for this purpose, as described below.


Technology	Maximum length of sequence fragments which can be read	Error rate	Total number of bases sequenced per sample per day
Sanger sequencing	900 bp	1 in 1000 bp	900 bp (1 fragment)
Illumina machines	200 bp	1 in 100 bp	3x10 ¹¹ bp (>1.5x10 ⁹ fragments)
PacificBiosciences machines	5000 bp	1 in 10 bp	4x10 ⁸ bp (>80 000 fragments)

	True	False
Illumina technology is best for finding new Single Nucleotide Variations (mutations to a single		
base) in the patient genomes.		
PacificBiosciences technology is best for assessing transcriptional changes by RNA sequencing.		
PacificBiosciences technology is best for finding rearrangements of chunks of DNA in the patient		
genomes.		
Sanger sequencing is best for validating sequencing results before using patients' genetic information to guide clinical interventions.		
information to guide crimical interventions.		


Sanger Sequencing: Chain-termination PCR Principles

Mostly similar to normal **PCR**, except for a few innovations:


- Only one primer is used → ensures that sequencing results are read in one direction.
- Inclusion of ddNTPs → creates fragments of variable lengths with coloured bases at the 3' end.

Sanger Sequencing: Chain-termination PCR Principles

Sanger Sequencing Workflow

Reading Sequencing Results from a Gel

Autoradiogram of a dideoxy sequencing gel

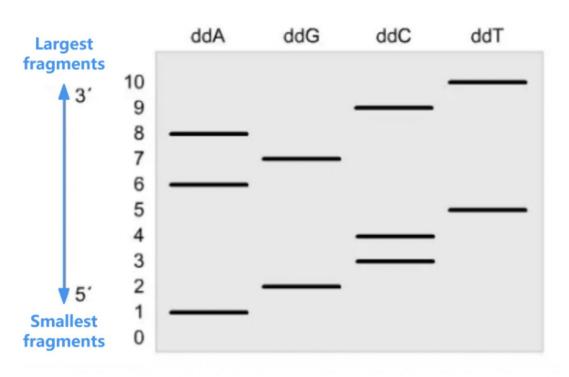
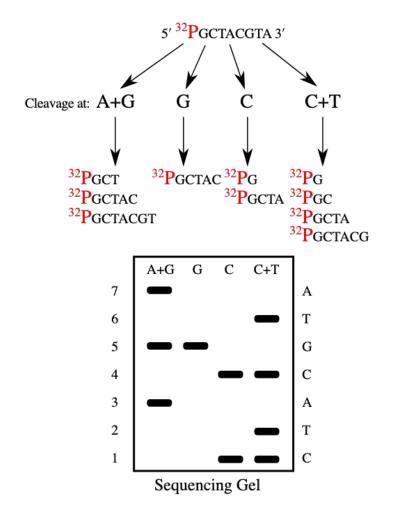


Image credit: Watson et al., MBG, 2008

Useful Videos for Sequencing

Sanger Sequencing Principles: https://youtu.be/KTstRrDTmWl

Capillary Electrophoresis: https://youtu.be/K_YtRanM4nQ


History of Sanger Sequencing: https://youtu.be/X9566yl2cBo

Maxam-Gilbert Sequencing

- 5' Radiolabeling
- Chemical cleavage in four separate reactions:
 - A+G: Formic acid
 - o **G**: Dimethyl sulfate
 - C+T: Hydrazine
 - **C**: Hydrazine + Piperidine
- Autoradiography

Video Explanation

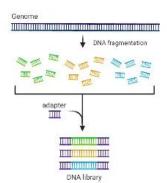
https://youtu.be/cl2s-ZMmcbc

Gel from M-G Sequencing

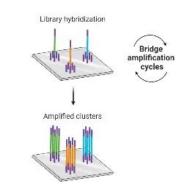
Sequence:

ATAGATGAGGCCTCG

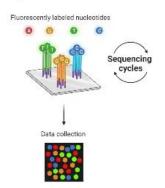
	A + G	G	С	C + T
15	_			
14			_	_
13				_
12				_
11			_	_
10	_	_		
9	_			
8	_			
7	_			
6				_
5	_			
4	_	_		
8 7 6 5 4 3 2	_			
2				_
1	_			

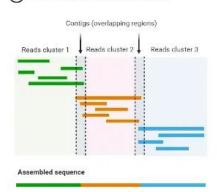

Next-Generation Sequencing

- Library Prep: Fragment DNA and ligate adapters
- Bridge Amplification: Create clusters of identical fragments
- Sequencing: Live sequencing using labelled nucleotides
- Data Analysis: Generate contiquous sequence

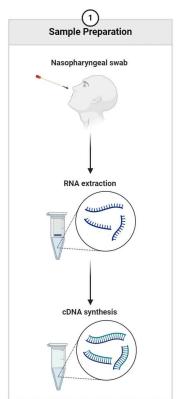

Video Explanation

https://youtu.be/CZeN-lqjYCo

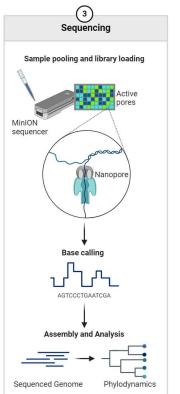

1) Library preparation


(2) DNA library bridge amplification

(3) DNA library sequencing




(4) Alignment and data analysis



Nanopore Sequencing (3rd Gen)

Oxford Nanopore Sequencing Steps

Video
Explanation
https://youtu.b
e/CyJWeVMFP
SU

Image credit: https://microbenotes.com/oxford-nanopore-sequencing/

DNA Sequence Analysis

Mostly following the question and relatively uncomplicated.

- Common <u>concepts</u> used:
 - Feature Analysis of DNA Sequences
 - Types of mutations (Prerequisite Info)
 - Inferring effects on protein function after identifying mutations, which may require knowledge of amino acid properties (Prerequisite Info – sometimes given in a graph)

	Point Mutations (A single nucleotide mutating into another) in a <u>Gene</u>			
	Silent Mutation	Missense Mutation	Nonsense Mutation	
A.a. sequence	No change in amino acid.	Amino acid change.	Premature stop codon.	
Example	GCC (Ala) → GCT (Ala)	TGC (Cys) → GGC (Arg)	TGC (Cys) → TGA (stop)	
Effects on protein f(x)	No effects – however, may affect codon usage (Silent mutations are also called <u>synonymous</u> <u>mutations</u> .)	Depends on which residue was mutated, and whether mutation is conservative (similar a.a. properties) or nonconservative.	Usually deleterious since truncated proteins are synthesised and degraded via nonsense-mediated decay (NMD).	

	Insertion / Deletion (Indel) Mutations in a <u>Gene</u>		
	<u>Frameshift</u> Mutation	<u>In-frame</u> Mutation	
Туре	Non-multiple of 3 indel → reading frame changes and all amino acids downstream of indel site affected	Multiple of 3 indel → no change in reading frame	
Example	Insertion: ATG GCT ACG (Met-Ala-Thr) → ATG GCG TAC G (Met-Ala-Tyr	Deletion: ATG GCT ACG (Met-Ala-Thr) → ATG ACG (Met-Thr)	
Effects on protein f(x)	learly on in sequence, also usually learly and frameshift, depends on where the		
Notes	Studies show that deletion mutations tend to be, on average, more deleterious than insertions.		

	Other M	utations	
	Splice Site Mutations	Regulatory Sequence Mutation	
Туре	Mutation in the GT+AG splice sites flanking introns (GT-intron-AG) Watch here for explanation: https://youtu.be/DJUQwuwFT5A	Mutation in promoter/enhancer/silencer → affects transcriptional regulation	
Example	Exon 1 – GT-Intron-AG – Exon 2 → Exon 1 – GA-Intron-AG – Exon 2 Outcome : Intron inclusion in mRNA	TATA Box: TATAAA → TACAAA: Transcriptional downregulation	
Effects on protein f(x)	Incorrect intron splicing which may introduce premature stop codons/delete exons, usually deleterious.	Upregulation / downregulation of affected protein.	

	Other Mutations		
	Transition Mutations	Transversion Mutation	
Туре	Purine ↔ Purine / Pyrimidine ↔ Pyrimidine Purine ↔ Pyrimidine		
Example	ATACG → GTACG (Purine → Purine)	ATACG → TTACG (Purine → Pyrimidine)	
Effects on protein f(x)	Both can be classified as traditional point mutations. Note that transversions have higher likelihood of amino acid mutations due to the wobble base effect. Read more here: https://en.wikipedia.org/wiki/Transversion		

Amino Acid Properties - Conservative vs Nonconservative

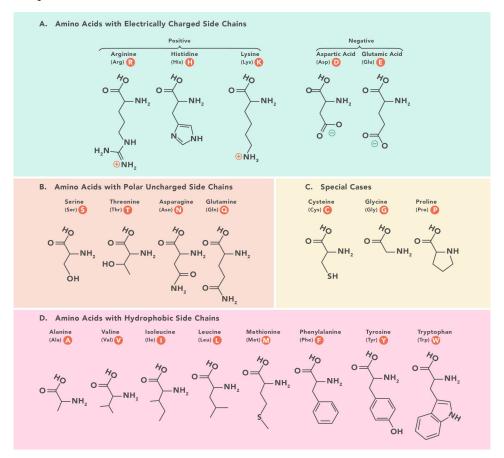
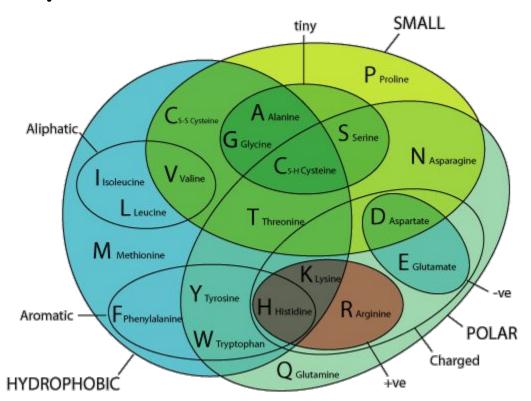
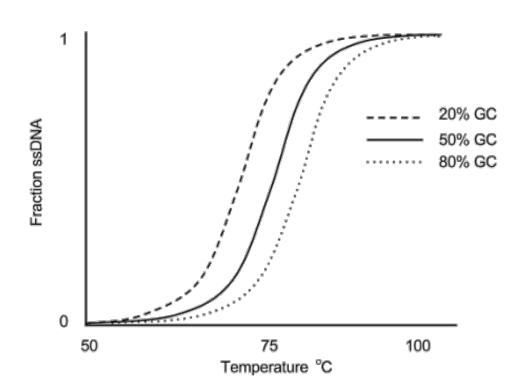



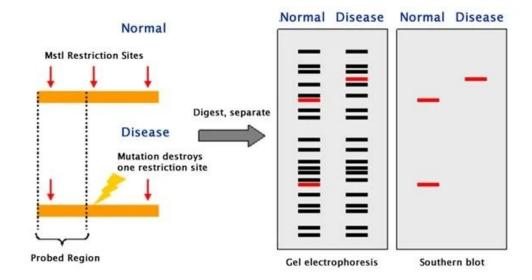
Image credit:


https://www.technologynetworks.com/ applied-sciences/articles/essential-ami no-acids-chart-abbreviations-and-stru cture-324357

Amino Acid Properties - Conservative vs Nonconservative

Extracting Features and Analysing DNA Sequences

GC content will
determine melting
temperature (Tm) –
temperature at which
half of the DNA is
single-stranded.



Restriction Fragment Length Polymorphism (RFLP)

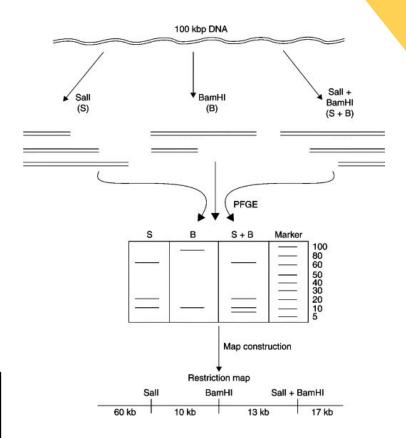
Differentiation of organisms by analysing **patterns** produced through **restriction enzyme digest**.

Applications:

- Determining disease states of an individual
- Forensic / paternity cases to determine DNA sample source
- Genetic mapping

Video Explanation

https://youtu.be/swQ_pm4cR5o


Restriction Mapping Pipeline

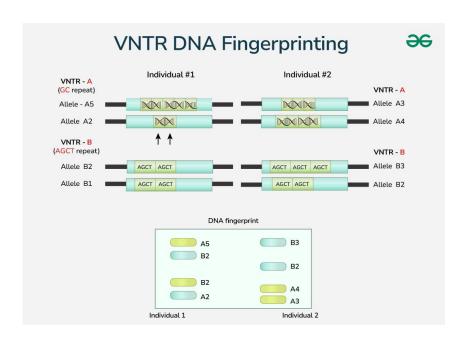
- Identifying restriction site locations on an unknown segment of DNA
- Usually involves **three-way digestion** in separate reactions of the DNA fragment:
 - 1. RE1 (e.g. Sall)
 - 2. RE2 (e.g. BamHI)
 - 3. RE1 + RE2 (e.g. Sall + BamHI)

This produces **distinct fragments** that enable where the cut sites are.

Video Explanation

https://youtu.be/ggalgp3iKGM

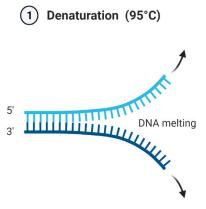
DNA Fingerprinting

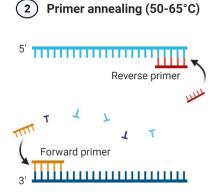

- Used in forensics to identify culprits based on the idea that each person has a unique DNA fingerprint
- DNA samples are first extracted then analysed via one of the pipelines below.

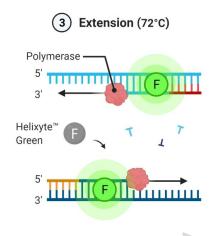
Pipelines for DNA fingerprinting:

- RFLP
- PCR → Short Tandem Repeat (STR) Analysis / Variable Nucleotide Tandem Repeat (VNTR) Analysis

Video Explanation

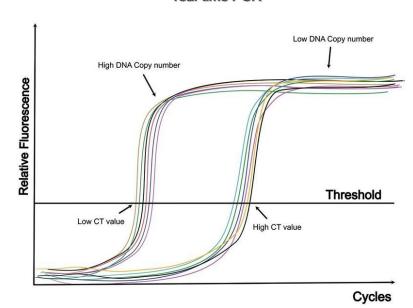

https://youtu.be/DbR9xMXuK7c




Quantitative PCR (qPCR)

- Quantify starting amount of a specific DNA sequence
- Works through amplification of specific DNA sequence by PCR and measuring DNA
 accumulation during each cycle using fluorescent dyes (e.g. SYBR Green) that bind to dsDNA.

Video
Explanation
https://youtu.
be/iu4s3Hbc_
bw


Quantitative PCR (qPCR) Graph

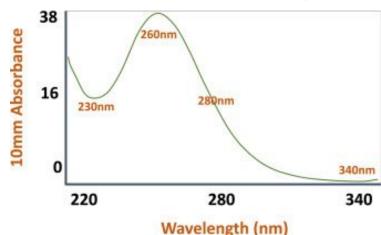
- Ct (cycle threshold) value is the indicator for initial DNA quantity → defined as number of cycles required to reach fluorescent threshold
- High Ct value → less starting DNA since more amplification cycles required to reach threshold
- <u>Low</u> Ct value → <u>more</u> starting DNA since less amplification cycles required to reach threshold
- Absolute (determining exact conc.) vs Relative (comparing two samples w/o exact conc.)
 quantification depends on experimental design.

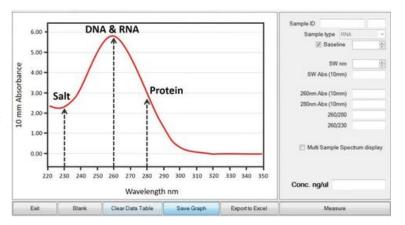
More Detailed qPCR

https://youtu.be/tH_ozcFwQ_Q

Amplification curve

DNA Purity Ratios and Nanodrop


- Ratio of absorbance at 260nm and 280nm (A260/A280) gives idea of DNA purity.
 - A260/A280 ~ 1.8: 'Pure' DNA
 - A260/A280 ~ 2.0: 'Pure' RNA
- The presence of contaminants will lower
 A260/A280 ratio → due to protein/phenol/other
 contaminants that absorb strongly at 280nm
- A260/A230 ratios may also be calculated to check for contaminants that absorb at 230nm
- Nanodrop measures DNA concentration using A260. Read more here:


 $\frac{\text{https://assets.thermofisher.com/TFS-Assets/MSD/Technical-Notes/TN52810-nucleic-acid-measurements-260-nm.pdf}{}$

Video Explanation

https://youtu.be/6i6PKyGIY3w

DNA Absorbance Graph

Thank you!